CSIR Central

Role of schorl’s electrostatic field in discoloration of methyl orange wastewater using schorl as catalyst in the presence of H2O2.

IR@AMPRI: CSIR-Advanced Materials and Processes Research Institute, Bhopal

View Archive Info
 
 
Field Value
 
Title Role of schorl’s electrostatic field in discoloration of methyl orange wastewater using schorl as catalyst in the presence of H2O2.
 
Creator Murari, Prasad
 
Subject Environmental Studies/Chemistry
 
Description Dyeing wastewater containing methyl orange (MO) could be effectively discolored by schorl-catalyzed Fenton-like system. Experimental results indicated that the MO discoloration ratios could be increased by increasing schorl dosage, temperature, initial H2O2 concentration, and by decreasing solution pH. When the raw schorl and the schorl samples sintered at 750°C, 850°C, 950°C and 1050°C were used as catalyst in Fenton-like system, the MO discoloration ratios obtained were 82%, 31%, 30%, 31% and 7%, respectively. XRD results showed that samples sintered at 750°C, 850°C and 950°C had no change in structure and still held the crystal structure of schorl and quartz, but, the content of schorl crystal decreased. Whereas, schorl crystal completely disappeared in the sample sintered at 1050°C and two new crystal phases of hematite and spinel were formed, which resulted in disappearance of the spontaneous ‘electrostatic poles’. Hence, it was inferred that the electrostatic field of schorl crystal could enhance the MO discoloration by schorl-catalyzed Fenton-like reaction.
 
Date 2010
 
Type Article
PeerReviewed
 
Format application/pdf
 
Identifier http://ampri.csircentral.net/163/1/art%253A10.1007%252Fs11431%2D010%2D4040%2D2.pdf
Murari, Prasad (2010) Role of schorl’s electrostatic field in discoloration of methyl orange wastewater using schorl as catalyst in the presence of H2O2. Technological Sciences, 53. pp. 3014-3019. ISSN 3014-3019
 
Relation http://ampri.csircentral.net/163/