CSIR Central

Effect of heat treatment on microstructure, mechanical, corrosion and biocompatibility of Mg-Zn-Zr-Gd-Nd alloy

IR@CGCRI: CSIR-Central Glass and Ceramic Research Institute, Kolkata

View Archive Info
 
 
Field Value
 
Title Effect of heat treatment on microstructure, mechanical, corrosion and biocompatibility of Mg-Zn-Zr-Gd-Nd alloy
 
Creator Jana, Anuradha
Das, Mitun
Balla, Vamsi Krishna
 
Subject Engineering Materials
 
Description Pure Mg and prealloyed Mg-Gd-Nd-Zr-Zn alloy samples were prepared using powder metallurgy route and further heat treated. The effects of heat treatment on the microstructure, mechanical , corrosion resistance and biocompatibility properties of these samples were investigated. Microstructural analysis showed alpha-Mg matrix with secondary phases like Mg3Gd/Nd, Mg12Gd/Nd and Mg41Nd5 in the Mg alloy. After heat treatment, 250 degrees C for 12 h, both samples showed improvement in the hardness and compressive strength due to rearrangement of the secondary phases and grains. However, the hardness and compressive strength of Mg alloy (54 +/- 5 HV and 239 +/- 23 MPa) was higher than pure Mg, which were further improved with heat treatment (61 +/- 4 HV and 260 +/- 21 MPa). The corrosion potential of Mg alloy was more positive (-1.51V) than pure Mg (-1.61V) signifying its better resistance to corrosion initiation. However, the Mg alloy exhibited higher corrosion current than pure Mg due to galvanic effect of secondary phases. In vitro tissue culture experiments demonstrated good biocompatibility of both samples and therefore present high strength Mg alloy can be better choice as biodegradable implants. (C) 2019 Elsevier B.V. All rights reserved.
 
Publisher Elsevier
 
Date 2020-04
 
Type Article
PeerReviewed
 
Format application/pdf
 
Identifier http://cgcri.csircentral.net/4933/1/valla.pdf
Jana, Anuradha and Das, Mitun and Balla, Vamsi Krishna (2020) Effect of heat treatment on microstructure, mechanical, corrosion and biocompatibility of Mg-Zn-Zr-Gd-Nd alloy. Journal of Alloys and Compounds, 821. Art No-153462. ISSN 0925-8388
 
Relation http://cgcri.csircentral.net/4933/