CSIR Central

Reactive Oxygen Species and Imbalance of Calcium Homeostasis Contributes to Curcumin Induced Programmed Cell Death in Leishmania donovani

IR@IICB: CSIR-Indian Institute of Chemical Biology, Kolkata

View Archive Info
 
 
Field Value
 
Title Reactive Oxygen Species and Imbalance of Calcium Homeostasis Contributes to Curcumin Induced Programmed Cell Death in Leishmania donovani
 
Creator Das, Rakhee
Roy, Amit
Dutta, Neeta
Majumder, Hemanta K
 
Subject Infectious Diseases and Immunology
 
Description Curcumin, a polyphenol compound, has been recognized as a promising anti-cancer drug. The purpose of the present study was to investigate the cytotoxicity of curcumin to Leishmania donovani, the causative agent for visceral leishmaniasis. Flow cytometric analysis revealed that curcumin induced cell cycle arrest at G2/M phase. Incubation of Leishmania promastigotes with curcumin caused exposure of phosphatidylserine to the outer leaflet of plasma membrane. This event is preceded by curcumininduced formation of reactive oxygen species (ROS) and elevation of cytosolic calcium through the release of calcium ions from intracellular stores as well as by influx of extracellular calcium. Elevation of cytosolic calcium is responsible for depolarization of mitochondrial membrane potential (DWm), release of Cytochrome c into the cytosol and concomitant nuclear alterations that included deoxynucleotidyltransferase-mediated dUTP end labeling (TUNEL) and DNA fragmentation. Taken together, these data indicate that curcumin has promising antileishmanial activity that is mediated by programmed cell death and, accordingly, merits further investigation as a therapeutic option for the treatment of leishmaniasis.
 
Date 2008
 
Type Article
PeerReviewed
 
Format application/pdf
 
Identifier http://www.eprints.iicb.res.in/286/1/APOPTOSIS%2C13(7)%2C867%2D882%2C2008[63].pdf
Das, Rakhee and Roy, Amit and Dutta, Neeta and Majumder, Hemanta K (2008) Reactive Oxygen Species and Imbalance of Calcium Homeostasis Contributes to Curcumin Induced Programmed Cell Death in Leishmania donovani. Apoptosis, 13 (7). pp. 867-882.
 
Relation http://dx.doi.org/10.1007/s10495-008-0224-7
http://www.eprints.iicb.res.in/286/